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Research cycle for retrospective clinical data 
analysis

• In practice, iterative hypothesis 
testing in clinical data can be a 
arduous process

• Majority of time spent is on 
bureaucracy and data-wrangling

• Ideally, this would be minimized to 
free researchers to think critically
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Trade-offs in utilization of Standard 
Classification schema
• Electronic medical records and insurance 

billing attempt to discretize human 
disease in a number of different ways 

• The most common way to do this is 
through “codes” or domain ontologies

• Allows for categorization at the expense 
of information loss. 

• By design, not use-case specific



Fibrolamellar Hepatocellular Carcinoma (FLC)

SEER: 
• Incidence 0.02/100,000
• Average age 22 years, but with a second 

group at 70-74 years

The SEER incidence rates and age 
distributions do not match expectations 
of clinical experts 

Ang et al., Gastrointestinal Cancer Res. 2013

genes such as TP53, KRAS, EGFR and CTNNB1, and have found
only a lack of mutations in the genes analyzed (4,14–16,30). To
perform an in-depth characterization of the genetic changes in
FL-HCC, we conducted WGS of both the FL-HCC tumor and
paired normal tissue from the patient for which we had obtained
fresh frozen tissue (Complete Genomics; Fig. 2A). 96.6 and
96.3% of the tumor and normal genomes, respectively, were
sequenced with 77.7 and 73.2% of the genomes sequenced to a
coverage of ≥30×. We conducted a two-step approach in iden-
tifying somatic mutations. First, to achieve maximum sensitiv-
ity, we screened for potential variants by using low thresholds
in CGtools (default parameters) and identified 200 395 potential
somatic small variants (indels, single-nucleotide variants and
substitutions). This number decreased to 86 331 after applying
additional quality control filters (minimum of 20× coverage in
the normal genome and maximum of 1 read supporting the
somatic allele in the normal genome to allow for sequencing
error). Next, we determined the true somatic mutations by
looking for validation in sequencing data generated by a differ-
ent technology (to minimize sequencer-specific artifact). Using

Illumina technology, we sequenced the cancer exome to an
average depth of 66×. Filtering the WGS data against the
exome sequencing data and the RNA-seq data, we confirmed 67
true somatic mutations in the cancer genome (with at least two
supporting reads in either the RNA-seq or exome sequencing
data; see Materials and Methods).

These 67 mutations were comprised of 5 insertions, 9 dele-
tions and 53 single-nucleotide variants (Supplementary Mater-
ial, Table S6). Unlike HCC cancer genomes, which have an
overrepresentation of transversions (31,32), the majority of the
variants identified in FL-HCC are transitions (A.G/T.C or
C.T/G.A; Fig. 2B). Eleven of the somatic mutations were
in coding regions resulting in two frameshifts, seven missense
mutations, one synonymous alteration and one single amino
acid deletion. Some of these mutations were predicted to have
damaging or deleterious effects on protein function by SIFT
and Provean scores, respectively (Supplementary Material,
Table S7). However, none of the mutated genes in this list are
known cancer genes nor do they have known involvement with
cancer pathways. Compared with recent HCC genome

Figure 1. Expression of neuroendocrine markers in FL-HCC. (A) Histopathology of the index case (H&E, hematoxylin and eosin staining) compared with the normal
liver area. Indent, high magnification. Scale bar, 100 mm.(B) Representative imageof an immunostaininganalysis for the knownFL-HCC markerCytokeratin7 (CK7,
brown staining). The section was counterstained with hematoxylin (Hem.). Scale bar, 100 mm. (C) Heat map of the 543 significantly differentially expressed genes
between tumor and normal liver tissue. Some known and novel genes upregulated in the tumor are shown, including neuroendocrine genes. (D) Immunofluorescence
analysis of the neuroendocrine markers CPE and UCHL1. The tumor area (top) is demarked by a dashed line. The CPE signal is red, and the UCHL1 signal is green.
DAPI marks the DNA in blue. Scale bar, 100 mm.

52 Human Molecular Genetics, 2015, Vol. 24, No. 1

Xu et al., Hum Mol. Genet. 2013



FLC does occurs in otherwise healthy livers, and 
by unique molecular mechanism

Most recent SEER estimates:  
• Incidence 0.02/100,000 (60-80 cases/year)
• Average age 22 years, but with a second 

group at 70-74 years

The SEER incidence rates and age 
distributions do not match expectations of 
clinical experts 
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Detectionof aRecurrentDNAJB1-PRKACA
Chimeric Transcript in Fibrolamellar
Hepatocellular Carcinoma
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David G. Darcy,1,2 Irene Isabel P. Lim,1,2 Caroline E. Gleason,1 Jennifer M. Murphy,1,2
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Rachel Belote,1 Soren Germer,4 Anne-Katrin Emde,4 Vladimir Vacic,4 Umesh Bhanot,6

Michael P. LaQuaglia,2 Sanford M. Simon1†

Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and
young adults with no history of primary liver disease or cirrhosis. We identified a chimeric
transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the
result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code
for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular
chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A.
Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed
in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence
supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs
examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.

Fibrolamellar hepatocellular carcinoma
(FL-HCC) is a rare liver tumor that was
first described in 1956 and that historically

has been considered a variant of hepatocellular
carcinoma (1, 2). It is histologically characterized
by well-differentiated neoplastic hepatocytes and

thick fibrous bands in a noncirrhotic background
(3, 4). FL-HCC has a clinical phenotype distinct
from conventional hepatocellular carcinoma and
usually occurs in adolescents and young adults.
Patients have normal levels of alpha fetoprotein
without underlying liver disease or history of vi-
ral hepatitis (3–6). Little is known of its mo-
lecular pathogenesis. FL-HCC tumors do not
respond well to chemotherapy (7, 8), and surgical
resection remains the mainstay of therapy, with
overall survival reported to be 30 to 45% at
5 years (1, 6, 8, 9).

To investigate the molecular basis of FL-HCC,
we performed whole-transcriptome and whole-
genome sequencing of paired tumor and adjacent
normal liver samples. To determine whether there
were tumor-specific fusion transcripts among the
coding RNA, we ran the program FusionCatcher

(10) on RNA sequencing (RNA-Seq) data from
29 samples, including primary tumors, metastases,
recurrences, and matched normal tissue samples,
derived from a total of 11 patients (table S1).
There was only one recurrent candidate chimeric
transcript detected in every tumor sample. This
candidate transcript is predicted to result from
the in-frame fusion of exon 1 from the DNAJB1
gene, which encodes a member of the heat
shock 40 protein family, with exons 2 to 10 from
PRKACA, the gene encoding the adenosine 3′,5′-
monophosphate (cAMP)–dependent protein ki-
naseA (PKA) catalytic subunit alpha. This fusion
transcript was not detected in any of the available
paired normal tissue samples (n = 9). This fusion
is not found in the COSMIC database (11) and
has not previously been reported in the literature.

To further characterize the candidate fusion
transcript, we directly examined those RNA-Seq
reads that mapped to PRKACA andDNAJB1. We
examined PRKACA transcript levels with DESeq2
(12) and found that they were increased relative
to normal in tumors from all nine patients tested
[P value adjusted formultiple testing (pAdj) < 10−12,
range three- to eightfold]. To determine whether
the increased expression was attributable to a
specific isoformof PRKACA,we quantified reads
mapping to different exons and evaluated differ-
ential expression using DEXSeq (13). In all nine
patients, there was an increase in the expression
of exons 2 to 10 of PRKACA in the tumor rela-
tive to exon 1 and relative to the expression in nor-
mal tissue (Fig. 1A, left). This exon expression
pattern does not correspond to a known isoform
of PRKACA. Rather, it reflects an increase in
PRKACA transcripts lacking the first exon, which
encodes the domain that engages the regulatory
subunits of PKA. All reads mapping to PRKACA
in normal tissue were either contained within
exons or bridged the junctions between adjacent
exons at annotated splicing sites (Fig. 1B, left,
blue). All tumor samples additionally had reads
mapping from the start of the second exon of
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Fig. 1. RNA-Seq read coverage from fibrolamellar hepatocellular carci-
noma and adjacent healthy liver tissue. (A to C) Plot of reads mapped to
chromosome 19 in the region encoding, on the negative strand, the genes PRKACA
(chr19:14,202,499 to 14,228,558) andDNAJB1 (chr19:14,625,580 to 14,640,086)
from the normal tissue (blue) and FL-HCC tissue (red). (A) Normalized RNA-Seq
read counts from nine pairs of tumor and adjacent tissue demonstrate a consistent
increase in tumor relative to normal in the readsmapping to exons 2 through10 of
PRKACA and a decrease in the reads of exon 1. Exons are shown as orange and
green blocks [see (D)]. Normalized read counts are plotted per exon part (nonover-
lapping portions of exons in all isoforms in ENSEMBL annotation; indicated by empty
boxes). Transcript structure (solid color boxes) indicates most likely dominant isoform
as inferred by RNA-Seq read coverage. Lines indicate the average normalized read
count per exon part (in dominant isoform) for normal and tumor samples. (B) Sashimi
plot (39) of RNA-Seq read coverage at PRKACA and DNAJB1 loci for patient 9. Solid

peaks depict reads per kilobase per million reads mapped (RPKM) within individual
exons. Reads that bridge different exons are shown as arcs. In every tumor sample
(nineout of nine) and innoneof thenormal tissue sample (zeroout of nine), there are
reads mapped from the end of exon 1 of DNAJB1 to the start of exon 2 of PRKACA
(read counts indicated for patient 9). (C) There is an additional set of reads from
patient 4 thatmap from the secondexonofDNAJB1 to the start of the secondexonof
PRKACA (read counts indicated). Indistinguishable results are observed in metastasis
tissue from this same patient. (D) RNA-Seq read mapping predicts the production of
four transcripts: a native DNAJB1 (green); a native isoform 1 PRKACA (orange); a
predominant chimera with the first exon of DNAJB1 and exons 2 to 10 of PRKACA;
and, in a subset of patients, a minority transcript with the first exon and part of the
second of DNAJB1 and exons 2 to 10 of PRKACA. (E). Sanger sequencing of RT-PCR
products from FL-HCC samples confirmed in seven out of seven patients a chimera
transcript joining the end of exon 1 of DNAJB1 and the start of exon 2 of PRKACA.
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• Most liver cancer occurs in 
chronically inflamed liver

• FLC typically occurs in young 
patients without comorbities. 

• Unique molecular event that has 
biochemical ramifications but 
poorly understood

FLC does occurs in otherwise healthy livers, 
and by unique molecular mechanism



Hyperammonemia and FLC

• Hyperammonemia is a major complication 
of Liver insufficiency

• About 30-70% of patients with cirrhosis are 
thought to experience HE at some point
• Readmission rates for patients with previous 

HE extremely high

• Complications relating to HE direct costs 
are estimated at ~5k-50k/patient/year

• Despite having healthy livers, FLC patients 
have been noted to suffer from severe 
cases of hyperammonemia 

Pharmacoeconomics. 2018; 36(7): 809–822.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999147/


Hyperammonemia in FLC: Biochemical hypothesis

• Waste management: processes 
excess nitrogen from amino 
acids

• Required for gluconeogenesis –
processes AA into carbon for 
the citric acid cycle 

• PKA inhibits glycolysis, 
requiring AA breakdown for 
aKG to enter the TCA cycle



Standard Classification schema can 
misrepresent incidences of rare diseases
• Most common classification schema 

used nationally is ICD-9/10. 

• Categorizes many cancers by organ site, 
rather than histopathology or molecular 
characteristics

• Does not contain individual categories 
for many rare diagnoses. 



Identifying FLC patients at UCSF

• EMR-billing codes (SNOMED)



Identifying FLC patients at UCSF

• EMR-billing codes (SNOMED)

• Term extraction and negation 
filtering of
• Oncologist notes
• Surgical notes
• Pathology reports



Identifying FLC patients at UCSF

• EMR-billing codes (SNOMED)

• Term extraction and negation 
filtering of
• Oncologist notes
• Surgical notes
• Pathology reports

• Radiology report identification





Using real-world data to elucidate mechanism of 
hyperammonemia

The gene mutated in FLC is responsible for 
Ammonia metabolism

We hypothesized that, if the 
hyperammonemia in FLC is related to this 
mutation, the metabolic state of 
hyperammonemia patients with FLC may be 
more similar to patients with inborn defects 
of Ammonia metabolism, instead of broader 
liver failure. 

To test this, we analyzed clinical laboratory 
data from each patient similar to gene 
expression analysis in scRNA



Metabolic lab data from 
hyperammonemia patients reveals 
eight distinct states



Metabolic lab data from 
hyperammonemia patients reveals 
eight distinct states



Metabolic state of FLC patient significantly 
clusters with patients with inborn errors of 
Urea Cycle
FLC patients were significantly enriched 
in two clusters: #1 and #7 (p=0.0005)

These same two groups were 
significantly enriched for patients with 
UCD (p=3x10-10)

No such significance was seen for 
patients with classical hepatocellular 
carcinoma



Metabolic states of enriched for FLC 
patients: “Metabolically healthy” and 
“hyper”-hyperammonemia
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Accurate 
identification of 

oncologic 
treatment in real-

world clinical 
data



UC Health Data Analytics Platform

Combining healthcare data from across the 
six University of California medical schools and systems 

Data Warehouse



UC Health Patients (since January 2012)



~100,000 active cancer patients across UC Health



How do we identify Cancer-cohorts at scale
• Diagnosis of cancer is 

methodical and pedantic
• Vast majority of Dx REQUIRE 

histopathological confirmation

• This is within plain text in 
pathology reports and 
challenging to process at scale 
across diseases

• Even if we could many patients 
receive Pathology outside your 
EMR system



Billing/Dx codes as surrogate for Diagnosis
• The most straightforward solution is to 

use the billing codes

• Unfortunately, this may be sensitive, 
but not specific

• Billing codes one of the least 
important things to a time-
compressed physician

• As such, lots of noise when using Dx 
codes alone



Using Treatment to define cohorts in real-
world Oncology can be similarly challenging
• Often involves multiple sequential lines of therapy

• Each therapy can involve multiple drugs, durations, or 
modalities. 

• Given significant toxicities associated with treatments, 
therapies often have to be modified from ideal standard of 
care, with unclear consequences, change in day structure



Knowing the drugs doesn’t identify the 
regimen



Cancer is an evolutionary process



Knowing the regimen doesn’t guarantee 
you know the treatment

• Regimens often must be modified 
due to side effects, toxicities, or 
laboratory values

• Some of these modifications involve 
dose, others schedule

• Sometimes whole drugs can be 
dropped or replaced

• Some are reversible, some are often 
permanent. 



Leveraging Open resources for Regimen 
Identification







Disease-specific Regimen testing

Drug Name

Drug A

Drug B

Drug C

Drug D

Drug E

Drug F

Drug G

Drug Name

Drug A

Drug C

Drug E

Drug Name

Drug A

Drug B

Drug C

Drug Name

Drug_G

Overlapping, 
non-mutually 
exclusive 
predictions

Patient drug 
administration data

Time-Series
Convolutional MLE



Pancreatic Treatment by Medical Center

3560 PDAC patients treated with systemic therapy

Colored by Medical center
(5 UC medical campuses)



Pancreatic Treatment by Year

2012 2022



Treatment Delay

FOLFIRINOX cycles by treatment delay



Learning patterns of treatment 
variation
• Gemcitabine/Abraxane is a common, 

highly toxic regimen

• Unsupervised learning on patients 
receiving this regimen identified to 
primary modes of treatment, one of 
which is not in our database. 

• “Off-label” regimen efficacy



Are we giving 
patients too much 
Chemotherapy?: 
Learning from off-
label regimen use



Next Steps

• Automated unsupervised learning across disease and detected 
regimens to identify “modes” of treatment modification

• Using variability in Real-world clinical practice as natural 
experimentation to identify Regimens where de-escalation may NOT 
affect efficacy. 

• Create pan-cancer clinical-decision-support models to predict toxicity 
and intolerance in traditional chemotherapy utilization. 



Madhumita Sushil

Accurate extraction 
of rich oncology 

diagnosis, treatment 
and response data 

from oncology notes



Oncologic History: Physicians attempt to 
summarize all data relevant to patient oncology 
course
• Reason patient originally 

presented

• How diagnoses was made and 
initial staging

• Previous treatments and 
responses

• Patient toxicity and trajectory



Recently, huge leaps in 
AI approaches to NLP 

Strong performance in 
ability to understand 
complex relations in 
grammar and language



Identifying causality and 
“physician-belief”



Identifying causality and 
“physician-belief”
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